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We elaborate on the distinction between geometric and dynamical phase in quantum
theory and we show that the former is intrinsically linked to the quantum mechanical
probabilistic structure. In particular, we examine the appearance of the Berry phase in
the consistent histories scheme and establish that it is the basic building block of the
decoherence functional. These results are consequences of the novel temporal structure
of histories-based theories.
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1. INTRODUCTION

The consistent histories formulation (Gell-Mann and Hartle, 1990, 1993;
Griffiths, 1984; Hartle, 1993; Omn`es, 1988, 1994) of quantum mechanics focuses
on the temporally ordered properties of physical systems: these are known as his-
tories. There are two important structural features of quantum mechanical history
theories. The first is that there does not exist a probability measure in the space of
all histories: there exists interference between pairs of histories.

The second is their nontrivial temporal structure, that allows a differentiation
between the kinematical and the dynamical aspects of time. This is present in the
quantum temporal logic formulation of consistent histories (Isham, 1994; Isham
and Linden, 1994); this allows a description of continuous-time histories (Isham
et al., 1998; Isham and Linden, 1995), in which there exist distinct generators
of time translation according to whether they refer to dynamical or kinematical
features of the histories (Savvidou, 1999).

In this paper, we establish that this distinction is mirrored in a differentiation
that is well-known in standard quantum theory: the one between the dynamical
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phase due to Hamiltonian evolution and the geometric phase of Berry (Berry, 1984).
What is more, the geometric phase manifests itself strongly in the probabilistic
structure of histories: it is the basic building block of the interference phase be-
tween pairs of histories. These results are established in an elementary fashion by
the study of fine-grained, continuous-time histories; they can be then suitably
generalized.

Now, the appearance (and measurability) of the geometric phase in the time
evolution of quantum system is arguably one of the most important structural fea-
tures of quantum theory. Berry showed that when a system undergoes a cyclic
evolution, due to an adiabatic change of parameters in the Hamiltonian, a contri-
bution in the phase appears, which is purely geometric. In particular, the phase
contribution does not depend on the details of the dynamics but only on the loop
that was transversed by the system in the parameter space.

It was soon realised (Simon, 1983) that the Berry phase is the holonomy of
a U (1) connection on the parameter space. In fact it can be generalized for any
kind of unitary evolution on the Hilbert space, since it arises by a naturalU (1)
connection on the projective Hilbert space.

The geometric phase is a measurable quantity, that does not formally corre-
spond to a self-adjoint operator. Furthermore it provides a paradigm and a motiva-
tion for investigations of topological phenomena in quantum theory, as it highlights
the natural appearance of gauge structures in the quantum formalism.

The key point of Berry’s result, however, that sets the subject in the founda-
tions of quantum theory, is the following: the Berry phasehas no analogue in the
language of probability theory.

A probabilistic theory for a physical system—either classical or quantum—
has basic notions such asobservables, propositions, and statesthat are represented
by suitable mathematical objects. In classical probability theory observables are
functions on a spaceÄ, propositions correspond tomeasurable subsetsof Ä, and
states to probability distributions. In quantum theory these probabilistic concepts
are also fundamental: they are represented by Hilbert space objects. These are
self-adjoint operators for observables, projection operators for propositions, and
density matrices for states.

However, the standard quantum mechanical formalism refers to properties of
the systemat a single moment of time: it assigns probabilities to possible instan-
taneous events and studies the evolution of these single-time probabilities. In this
context, the phase of a Hilbert space vector is not physically relevant, as it does not
enter the single-time probability assignment. When this phase is ignored, quantum
theory isonly a generalization of probability theory, with the nondistributivity of
the lattice of propositions or equivalently the noncommutativity of the algebra of
observables being the main difference.

This is the attitude taken by approaches to quantum theory that attempt to
write an axiomatic framework without assuming a priori the existence of a Hilbert
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space, for example, theC∗-approach, quantum logic schemes or the operational
approach to quantum theory.

The existence of the Berry phase, as a measurable quantity, shows that the
single-timeprobabilistic description does not exhaust the physical content of quan-
tum theory. The Berry phase appears in distinction to the well-known phases of
unitary evolution that are generated by a Hamiltonian. Its nature is purely kine-
matical and it is a manifestation of the nontrivial topology of the space of pure
quantum states, since it appears naturally when we view the Hilbert spaceH of
quantum theory as a complex line bundle over the projective Hilbert spaceP H
(Anandan and Aharonov, 1990; Page, 1987; Simon, 1983). The Berry phase is
then the holonomy of thenatural connection of this bundle (i.e., the connection
induced by the inner product).

It needs to be emphasized that this bundle structure is irrelevantto any proba-
bilistic aspects of quantum theory.In other words, in the unitary time evolution of
quantum theory there appears an extra phase due to the topological structure of the
theory; it has no intuitive physical explanation and it has no classical analogue—
either in classical mechanics5 or in classical probability theory.

In the single-time description of a quantum system the geometric phase is
lost. Hence it is rather difficult to understand its physical meaning in standard
quantum theory. However, the importance of geometric phase is more clear in a
quantum theory that is based onhistories. A history is defined at different moments
of time, in distinction to standard single-time quantum theory. Such a formulation
is provided by the consistent histories approach to quantum theory.

This approach was developed as a realist interpretational scheme for quantum
theory (Gell-Mann and Hartle, 1990, 1993; Griffiths, 1984; Hartle, 1993; Omn`es,
1994). As such, it suffers from the generic problems of such schemes, i.e., contex-
tuality of predictions about properties of the physical system (Dowker and Kent,
1996; Kent, 1997). Nonetheless, it provides a new insight in understanding the
appearance of the Berry phase in quantum theory, in a manner independent of any
particular interpretational scheme one may choose to employ.

The basic object of the histories formalism is a history, i.e., a sequence of
time-ordered propositions about properties of the physical system. It corresponds
to different possible scenario of the system. The main feature, that distinguishes
quantum mechanical histories from the ones appearing in the theory of stochastic
processes (classical probability theory), is that the probabilities for historiesdo
not satisfy the additivity condition.

p(α ∨ β) = p(α)+ p(β), (1)

whereα andβ are mutually exclusive scenario. This is due to the fact that quantum

5 The Hannay angle (Hannay, 1985) is an analogue in classical mechanics. But this appears whenever
certain degrees of freedom can be ignored because of a symmetry, whereas the wave function is
assumed to give a complete description of the quantum system.
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theory is based on amplitudes rather than probability measures, and it further
implies the existence of interference between histories.

The corresponding information, together with the probabilities, is encoded in
an object called thedecoherence functional. This object incorporates the kinemat-
ics, the dynamics, and the initial condition of the physical system.

In our effort to identify the role of the Berry phase in the histories scheme,
we arrived at a surprisingly simple result: the geometric phaseis the main build-
ing block of the decoherence functional.Hence, interference between histories is
ultimately to be attributed to the presence of the geometric phase. Moreover, we
showed that the distinction between geometric phase and the dynamical phase
of canonical quantum theory—i.e the one appearing due to Hamiltonian time
evolution—is a manifestation of the temporal structure of history theories: the ex-
istence of two laws of time transformation each corresponding to the causal/
kinematical and dynamical notions of time (Savvidou, 1999, xxxx).

2. THE GEOMETRIC PHASE

The simplest way to demonstrate the origin of the Berry phase is in the context
of differential geometry. To this end, let us take the complex Hilbert spaceH to be
finite dimensional (H = Cn+1). The inner product〈z | w〉 = z̄awa gives a metric
ds2 = dz̄a dza (wherea runs from 0 ton, andz refers to coordinates with respect
to a basis), from its real part, and a symplectic formω = dz̄a ∧ dza on H , from
its imaginary part.

The metric induces the standard metric to the unit sphereS2n+1 of all nor-
malised vectors. The unit sphere is aU (1) principal bundle over the projective
Hilbert spaceP H, the space of rays; this structure is known as the Hopf bundle.
An element ofP H is represented by [ψ ], the equivalence class of all normalised
vectors that differ from the normalised vector|ψ〉 only with respect to a phase.
The metric onS2n+1 induces a metric onP H, defined as

ds2(P H) = 1

1+ w̄awa
dw̄a dwa (2)

and an one-formA = i w̄a dwa. Here, we have defined coordinates such that for
1≤ a ≤ n, wa = za/z0.

In particular, the one-formA is aU (1) connection form for the Hopf bundle,
and it is called the Berry connection; its curvature is equal to the projection of the
symplectic form inP H, moduloi . It may be written in a coordinate independent
way asA = i 〈ψ |d|ψ〉.

We assume an arbitrary unitary time evolutionU (s) on the Hilbert spaceH ,
and we take an initial vector|ψ0〉 at timet = 0. The curve

U (s)|ψ0〉 := |ψ(s)〉 (3)

projects to a curve [ψ(s)] on the projective Hilbert spaceP H.
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If we further assume thatU (s) is such that at timet, [ψ(t)] = [ψ(0)], i.e. we
have a loopγ on the projective space, then the phase that is transversed on the
U (1) fiber is equal to

exp

[∫ t

0
ds〈ψ(s)| − d

ds
− i H (s)|ψ(s)〉

]
:= ei S[ψ(·)] , (4)

where we wroteH (s) = U−1(s)U̇ (s) and S is the action out of which the
Schrödinger equation is derived. The second term is a time-dependent angle due
to time evolution.

However, the first term is purely geometrical; it depends only on the trans-
versed loop, and is equal to the holonomy of the Berry connection

ei
∫
γ

A = exp

(
−
∫
γ

〈ψ | dψ〉
)
. (5)

Note that the Berry phase does not change if we take different representatives|ψ〉
for the equivalence class [ψ ].

The geometric phase may also be defined for open paths by exploiting the
metric structure onP H (Samuel and Bhandari, 1988). It allows us to form a loop
from any path on the projective Hilbert space, by joining its endpoints with a
geodesic. The geometric phase of the loop thus constructed is defined to be equal
to the geometric phase associated to the open path. Hence ifγ = [ψ(·)] is a path
on P H, its associated geometric phase is proved to equal

ei θg[γ ] = exp

(
−
∫ t f

ti

dt 〈ψ(t) | ψ̇(t)〉
)
〈ψi | ψ f 〉. (6)

This expression is meaningful only if the endpoints are not orthogonal.
Hence, the Berry phase is strongly related with geometric and topological

structures of the Hilbert space of quantum theory. These geometric structures are
physically relevant because of Born’s probability interpretation: the single-time
expectation values for observables do not change with phase transformations of
the Hilbert space vector|z〉 → eiφ|z〉.

3. HISTORIES

A history is defined as a sequence of projection operatorsαt1, . . . , αtn , and it
corresponds to a time-ordered sequence of propositions about the physical system.
The indicest1, . . . , tn refer to the time a proposition is asserted and have no
dynamical meaning. Dynamics are related to the HamiltonianH , which defines
the one-parameter group of unitary operatorsU (s) = e−i Hs.

A natural way to represent the space of all histories is by defining a history
Hilbert spaceV := ⊗tiHti , whereHti is a copy of the standard Hilbert space,
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indexed by the moment of time to which it corresponds. A history is then rep-
resented by a projection operator onV. This construction has the merit of pre-
serving the quantum logic structure (Isham, 1994; Isham and Linden, 1994) and
highlighting the nontrivial temporal structure of histories (Savvidou, 1999, xxxx).
Furthermore, one can also construct a Hilbert spaceV for continuous-time histories
(Anastopoulos, xxxx; Ishamet al., 1998; Isham and Linden, 1995) by a suitable
definition of the notion of the tensor product.

Furthermore to each historyα we may associate the class operatorCα defined
by

Cα = U †(tn)αtnU (tn) · · ·U †(t1)αt1U (t1). (7)

It is important to note that time appears intwo distinct placesin the definition
of the class operatorCα: as the argument of the Heisenberg time evolution and
as the parameter identifying the time at which a proposition is asserted. In what
follows, we will show that this distinction is strongly related to the distinction
between geometric and dynamical phase.

The decoherence functional is defined as a complex-valued function of pairs
of histories: i.e. a mapd : V × V → C. For two historiesα andα′ it is given by

d(α, α′) = Tr
(
Cαρ0C†α′

)
, (8)

in terms of the initial time densityρ0 matrix.
The standard interpretation of this object is that whend(α, α′) = 0 forα 6= α′

in an exhaustive and exclusive set of histories,6 then one may assign a probability
distribution to this set asp(α) = d(α, α). The value ofd(α, β) is, therefore, a
measure of the degree of interference between the historiesα andβ.

4. THE GEOMETRIC PHASE FOR HISTORIES

We now consider a time interval [t0, t f ] and a history withn+ 1 time steps
αt0, αt1, . . . , αt f . We assume that the projectors are fine-grained, which means that
they correspond to elements of the projective Hilbert space

αti =
∣∣ψti

〉〈
ψti

∣∣. (9)

We first set the Hamiltonian equal to zero. The trace of the class operatorCα

equals

Tr Cα =
〈
ψt0

∣∣ψtn

〉〈
ψt1

∣∣ψt0

〉〈
ψt2

∣∣ψt1

〉 · · · 〈ψtn

∣∣ψtn−1

〉
(10)

and it is nonzero provided there is no value ofi , for which the vector|ψti 〉 is
orthogonal to|ψti−1〉.
6 By exhaustive we mean that at each moment of timeti

∑
αti
αti = 1 and by exclusive thatαti βti = δαβ .

Note that byα we denote both the proposition and the corresponding projector.
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Next, we assume that max|t j − t j−1| = δt , and we choose the number of time
stepsn very large, so thatδt ∼ O(n−1). Then|φt j 〉 approximates a path [φ(t)] on
P H. Hence,

log Tr Cα = log
〈
ψt0

∣∣ ψtn

〉+ n∑
i=1

log
〈
ψti

∣∣ ψti−1

〉
= log

〈
ψt0

∣∣ ψtn

〉+ n∑
i=1

log
(
1− 〈ψti

∣∣ ψti − ψti−1

〉)
(11)

and the limit of largen yields

log Tr Cα = log
〈
ψt0

∣∣ ψtn

〉− n∑
i=1

〈
ψti

∣∣ ψti − ψti−1

〉+ O((δt)2) (12)

As δt → 0 the sum in the right-hand side converges to a Stieljes integral− ∫ t f

ti
dt

〈ψ(t) | ψ̇(t)〉. Hence for a continuous path we take

Tr Cα = ei θg[ψ(·)] (13)

Therefore, the mapα→ Tr Cα assigns to each fine-grained “continuous-
time” historyα to its corresponding Berry phase. In fact, the pathsψ(·) need not
be continuous; it suffices that the Stieljes integral is defined.

Furthermore, one may use the above result to define the Berry phase, associ-
ated to a general coarse-grained history. Hence, ifα = (α̂t1, . . . , α̂tn) is a history,
then we may write

α→ Tr
(
α̂tn · · · α̂t2α̂t1

)
. (14)

This defines a map fromV to the complex numbers, thatassigns to each history
its corresponding geometric phase.In particular, if we decompose the projector
α̂ti with respect to an orthonormal basis in the subspace, in which it projects

α̂ti =
∑

r

∣∣ψ r
ti

〉〈
ψ r

ti

∣∣, (15)

we may then write the geometric phase for the coarse-grained histories as∑
r1···rn

ei θg[ψr1··· rn (·)] (16)

In the continuum limit this can be written, suggestively, as a sum over all
fine-grained pathsψ(·) compatible with the coarse-grained historyα∑

ψ(·)∈α
ei θg[ψ(·)] (17)

In view of this linearity, the map that assigns to each history the corresponding
Berry phase can be described by a functional onV. WhenV with a tensor product
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of single-time Hilbert spaces, this linear functional is naturally induced by the
tensor product construction.

We must note here that our definition of the geometric phase is structurally
distinct from the standard one. The latter refers to the evolution of astateunder a
dynamical law. In histories formalism, the geometric phase is defined onobserv-
ables, or, more precisely, onpossiblescenario for the physical system. There is,
therefore, no need to make any assumption about the dynamics: this definition of
geometric phase makes sense even if the dynamics is nonunitary.

5. THE STRUCTURE OF THE DECOHERENCE FUNCTIONAL

The standard form of the decoherence functional incorporates the histories
α by means of the operator̂Cα. This suggests an expression for the decoherence
functional that can be written in terms of the geometric phase.

To this end, let us assume two “continuous-time” histories, which we shall
denote asαφ(·) andαψ(·). From Eq. (13), and for the decoherence functional written
for vanishing Hamiltonian, we take

d
(
αψ(·), αφ(·)

) = 〈φ(ti )|ρ0|ψ(ti )〉〈ψ(t f ) | φ(t f )〉

× exp

(
−
∫ t f

ti

dt 〈ψ(t) |ψ̇(t)〉 +
∫ t f

ti

dt 〈φ̇(t) | φ(t)〉
)

(18)

The two histories form a loop onP H, provided that their endpoints coincide. For
example, this is the case where the density matrixρ0 is pure, and hence equal to
a one-dimensional projector that could be considered as part of the history. From
Eq. (14) we conclude that the value of the decoherence functional is the Berry
phase associated to this loop.

When the Hamiltonian is included, we find

d
(
αψ(·), αφ(·)

) = 〈φ(ti )|ρ0|ψ(ti )〉〈ψ(t f ) | φ(t f )〉 ei S[ψ(·)]−i S∗[φ(·)] , (19)

where the action operatorS (Savvidou, 1999) is given by the expression

S[φ(·)] =
∫ t f

ti

dt 〈φ(t)|i d

dt
− H |φ(t)〉 (20)

Hence the phase change on the Hopf bundle enters the decoherence functional at
the level of the most general fine-grained histories.

Let us now note the following:
First, the appearance of the action is contingent upon the dynamics given

by a Hamiltonian. One may consider more general dynamics: they are incorpo-
rated in the decoherence functional through the map ˆαt → α̂t (t) that assigns to
each Schr¨odinger-picture projector ˆαt , a corresponding Heisenberg-picture one
α̂t (t), at timet . In full generality, it suffices that the dynamics is generated by a
one-parameter family of automorphisms of the algebra of operators on the Hilbert



P1: FMN

International Journal of Theoretical Physics [ijtp] pp365-ijtp-366315 February 13, 2002 8:36 Style file version Nov. 19th, 1999

Quantum Mechanical Histories and the Berry Phase 537

spaceH (it does not even need to be an one-parameter group). Hence, even though
the expression involving the action is suggestive and simple, it is not as funda-
mental and general as Eq. (18), which expresses the decoherence functional in
terms of the Berry phase, prior to the introduction of the dynamics. One should
keep in mind that one aim of the histories programme is to describe physical
systems that have nontrivial temporal structure—as arising, for instance, in quan-
tum gravity—and are, perhaps, not amenable to a Hamiltonian description. The
Eq. (18) for the decoherence functional is of sufficient generality to persist even
in such contexts.

Second, following our earlier reasoning, it is easy to show that the fine-grained
expressions for the decoherence functional can be used to determine its values for
general coarse-grained histories. In analogy to (17) they read

d(α, β) =
∑
ψ(·)∈α

∑
φ(·)∈β
〈φ(ti )|ρ0|ψ(ti )〉〈ψ(t f )|ρ f |φ(t f )〉 ei S[ψ(·)]−i S∗[φ(·)] (21)

Finally, the knowledge of the geometric phase—for a set of histories and of
the automorphism that implements the dynamics—is sufficient to fully reconstruct
the decoherence functional, and hence all the probabilistic content of a theory. The
contribution of the initial state can be obtained by convex combinations of a pure
state at the initial moment of time. What is interesting, is that at this levelthere is
no need for our system to be described by a Hilbert space. All that is needed is a
space of paths, on any manifold, theU (1) connection from which the functional
giving the Berry phase will be constructed and the dynamical law in the form of
an automorphism of the space of observables. This can be an important starting
point for developing geometric procedures forquantizationof quantum mechanical
histories.

6. CONCLUSIONS

From Eq. (13) we notice that the Berry phase arises solely from theorder-
ing in timeof the projection operators, as they appear in the decoherence func-
tional. It eventually corresponds to the kinematical part of the action Eq. (20). The
Hamiltonian part appears due to Heisenberg-type time evolution of the projectors.
This distinction is a fundamental and impressive feature of history theories that
was identified in Savvidou (1999, xxxx). There exist two distinct ways, in which
time appears in physical theories: as a distinction between past and future (partial
ordering property of time) and as the parameter underlying the evolution laws
(time as parameter of change).

One of us (N.S.) has shown that these notions of time are associated to
the kinematical and dynamical part of the action functional respectively, and
there exist distinct operators that generate time translation with respect to these
two parameters. They are an irreducible part of any theory that is based on
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temporally extended objects, whether classical or quantum. This distinction is
manifested in the two different ways the time parameter appears in the defini-
tion of the class operatorCα. From Eqs. (13)–(20) we see that this isidentical
to the distinction between the geometric and the dynamical phases of standard
quantum theory. In a sense, this is the only nontrivial remnant in canonical quan-
tum theory of the temporal structure of history theories. The reader is referred
to Savvidou (xxxx) for a fuller treatment of this issue and to Savvidou
and Anastopoulos (2000) for the merits of the quantization scheme motivated
by it.

The fact that the off-diagonal elements of the decoherence functional cor-
respond to the difference in Berry phase between its histories, suggests that the
current interpretation of probabilities in the consistent histories scheme is at least
incomplete. The relative geometric phase between two histories is a measurable
quantity, while the present interpretation gives physical meaning to the values of
only thediagonal elementsof the decoherence functional.

Of course, one might argue that the geometric phase is measured only by
comparing statistical measurements in two differentensemblesof systems. As
such, it may be described as any other measurement in the scheme. However, the
point we make is that the off-diagonal elements of the decoherence functional have
a clear geometric and operational meaning. Therefore, an interpretational scheme
that ignores them might face a truncation of the physics it addresses. In addition,
the Berry phase would constitute a quantity that cannot be explained in terms of
the properties of an individual quantum system, even though it ismeasuredin
ensembles. This is extremely problematic for the aims of a realist interpretation of
quantum theory.

Our results highlight the presence of the complex phases in time evolutionat
the purely kinematical level, as the main contributors in the nonadditivity of the
probability measure for histories.

This strongly suggests that the presence of complex numbers in quantum
theory is intrinsically linked to itsdistinct “probabilistic” structure. To see this
consider the following.

First, both classical and quantum probability theory at a single moment of
time are described by an additive measure over a lattice of propositions. But when
time-evolution takes place in quantum theory, there appear complex phases that
render the probability measure nonadditive (this is the essence of the interference
of histories).

Second, the pure time evolution in standard quantum theory is of a
Hamiltonian type onP H; the dynamical phases that are generated by the
Hamiltonian, arestructurally not differentfrom any angle variables of classical
mechanics. There isnothing inherently complex in them, as the Schr¨odinger equa-
tion can be written without any reference to ani . On the other hand the geometric
phase appears due to the bundle structure of the quantum mechanical space of rays.
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The bundle structure arises in the first place, because single-time probabilities do
not depend on phase. Hence, even in standard quantum theory there is an indirect
relation between the Berry phase and the probability assignment. This is brought
fully into focus in the histories formalism.

We explained in the introduction, that when we are restricted in a single mo-
ment of time, the structures of quantum theory are in one-to-one analogy with
the ones of classical probability theory. From an operational perspective, quan-
tum mechanics at a single moment of time may be formulated without making
any reference to complex numbers; it can be stated solely in terms of real-valued
observables, expectation values, and probabilities. It is only, when, we study phys-
ical systems in a temporal sense that complex numbers appear. However, their
appearance cannot be attributed to the law of time evolution.

Dynamics, in general, appears as an automorphism of the space of observ-
ables: if the observables are defined as real-valued, they will remain real-valued
when dynamically transformed. For example, Schr¨odinger’s equation does not
need to introduce the complex unit; it can be equally well written in a real Hilbert
space (Stueckelberg, 1960).

Alternatively, one may substitute Schr¨odinger’s equation with a real, partial
differential equation on phase space—using either the Wigner or the coherent state
transforms. Hence, while complex numbers in quantum theory are unavoidable
when we study properties of the system at different moment of time,they are not
introduced by the dynamical law. Furthermore, it is the temporal ordering that
introduces phases, in an irreducible way, into the decoherence functional, that it is
encoded in the definition of the class operatorCα.

In other words, the geometric phase is a genuinely complex-valued object;
and it is only the fact that wemeasuresuch an object, thatforcesus to accept
complex numbers as an irreducible part of quantum theory. Complex number are
not a necessary consequence ofany dynamical law.

Hence, we conclude that,the complex structure of quantum theory is intrinsi-
cally linked to both its probability structure and the way the notion of succession is
encoded. After all quantum theory is a theory of amplitudes, and the results from
the above analysis imply thatall physically relevant amplitudes—contained in the
decoherence functional—are constructed from the geometric phase. As such they
aregeometrical in origin.

This is an intriguing result. It is a structural characteristic of quantum proba-
bility that should persist in frameworks that attempt to generalize quantum theory
in a way that the Hilbert space is not a necessary ingredient.
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